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Abstract
Recently, the semiclassical theory of the anomalous Hall effect induced by the Berry curvature
in Bloch bands has been introduced. The theory operates only with gauge invariant concepts
that have a simple semiclassical interpretation and provides a clear distinction among various
contributions to the Hall current. While the construction of such an approach to the anomalous
Hall effect problem has been long sought, only the new semiclassical theory demonstrated the
agreement with quantitative results of rigorous approaches based on the Green function
techniques. The purpose of this work is to review the semiclassical approach including the early
ideas and the recent achievements.
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1. Introduction

The anomalous Hall effect (AHE) is one of the most famous
transport phenomena in magnetic materials. Unlike in
paramagnets, the Hall resistance Rxy of a magnetic film has
two contributions. One is usual, it is proportional to the applied
magnetic field H . The other one is anomalous, it is observable
only in a ferromagnetic state. The anomalous contribution
is often proportional to the magnetization rather than to the
applied magnetic field

Rxy = r0 H + ra M, (1)

where M is the magnetization of the sample, r0 and ra are
constants that characterize the strength of the standard and
the anomalous Hall resistivities, respectively. The recent
theoretical research demonstrated that the linear dependence
on M in (1) is not universal and the Hall resistivity can
show resonance features as a function of variable parameters,
including the magnetization.

The practical interest in the AHE has continuously been
driven by a difficulty to measure the carrier density in
ferromagnets. Standard techniques based on measurements
of the Hall conductivity are obstructed by the considerable
anomalous contribution which can be much greater than the
standard Hall conductivity. Recent advances in spintronics,
especially the creation of new types of diluted magnetic
semiconductors, revived interest in the AHE as a useful
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tool to control spin-polarized currents and to characterize the
magnetization. In addition, the recent theoretical interest has
been fueled by the new interpretation of the anomalous Hall
conductivity in terms of Berry phases and topological defects
in the crystal band structure. Many theoretical constructions
that usually had been considered of relevance mainly in
high energy physics such as noncommuting coordinates and
magnetic monopoles, became useful and even measurable in
experiments on the AHE [1–4].

Despite the long history and the considerable practical
importance, the theory of the anomalous Hall effect has
remained controversial. The first steps to explain the AHE in
ferromagnets were made more than 50 years ago. Since then
many articles were published to correct previous mistakes and
to suggest new explanations. Many of such efforts still were
incomplete. While they resolved several pieces of the puzzle
they also disregarded others. Sometimes distinct quantitative
predictions followed from applications of different methods to
the same model. Such controversy persists even at the present
time. For example, there is a number of recent publications
with contradictory quantitative predictions for the AHE in the
Rashba 2D electron system [5–14]; although the issue has
finally been resolved [13, 14].

Many aspects of the AHE have been extensively reviewed
in the literature. The detailed up to date discussion
of experiments with diluted magnetic semiconductors and
the comparison with existing numerical and theoretical
predictions can be found in recent reviews [15–18]. The
modern topological interpretation of the AHE and the Kubo
formula in terms of a magnetic monopole in the momentum
space was reviewed in [19]. There are also much older
introductions [20, 21], concentrated on the side-jump effect
in III–V semiconductors, although many concepts, discussed
there, have been strongly revised in recent years. The recent
review of these older work, made in the same spirit, can also
be found in [22] together with the discussion of results on the
spin Hall effect.

Numerous efforts to design a rigorous semiclassical
approach that would explain in simple terms all possible
contributions to the anomalous Hall conductivity including
disorder effects, however, still lack a detailed comparison in
a single work. The goal of the present review is to fill this gap
and to discuss in more detail the existing semiclassical theories,
their advantages and limitations. We start with the earliest
ideas introduced by Karplus, Luttinger and Smit and end
with the most recent constructions that demonstrated the 1–1
agreement with the rigorous quantum mechanical techniques.

The structure of this review is the following. In the
rest of the introduction in section 1.1, we recall the basic
text book information about the semiclassical approach to
conductivity calculations taking as an example free electrons
interacting with elastic scatterers. In section 1.2, I remind
several commonly known facts about Bloch bands and explain
how the introduction of the band structure complicates the
creation of the semiclassical theory of the transport, especially
in the application to the AHE. In section 2, I discuss the forces
driving the AHE and review the earliest theories, including
the quantum analog of the Boltzmann equation applied by

Luttinger (section 2.1) and the introduction of noncommuting
coordinates by Adams and Blount (section 2.2). In section 3, I
proceed with more recent theories based on the gauge invariant
formulation of the wavepacket dynamics and its Berry phase
interpretation. In sections 3.1 and 3.2, I will review the
application of this approach to the anomalous Nernst effect,
the intrinsic contribution and the side-jump effect. Sections 4
and 5 are devoted to the rigorous semiclassical theory of the
AHE, free of most limitations of previous approaches. In
section 4, I discuss the rules that connect the scattering matrix
with the classical concepts such as the scattering probability
and the size of the coordinate shift at a scattering event. In
section 5, I introduce the semiclassical Boltzmann equation
and subsequently explain all important contributions to the
Hall conductivity. There I will also discuss the strength of
the AHE and comparisons with rigorous quantum mechanical
approaches. Section 6 is the summary that discusses the
present status of the theory and outlines possible future
research directions.

1.1. Semiclassical approach to conductivity calculations

Quantitative estimates of the dc AHE by standard techniques
based on the evaluation of Green functions and their products
invariably involve long complex calculations. It is hard to
achieve transparent interpretations; therefore theories of the
AHE normally focus on particular simple model Hamiltonians
and ignore many-body interactions apart from mean-field
exchange potentials that encode the magnetic order. Even
with these simplifications, the AHE theory remains difficult to
develop.

One of the problems is the small magnitude of the
AHE in comparison to the longitudinal conductivity. When
considering the perturbative expansion of the conductivity in
the weak disorder limit, the AHE contribution appears only
in subdominant terms of higher powers in small parameters.
Many standard approximations turn out to be no longer valid
at these orders. Even a proper counting of relevant terms of
a similar strength was a problem in many cases. Another
difficulty is in the physical interpretation of conductivity
contributions in the Kubo formula or in the Keldysh technique.
Generally these rigorous quantum mechanical approaches
operate with nongauge-invariant objects, such as off-diagonal
elements of Green functions, of the density matrix or of the
velocity operator, which only in the end are combined in
the gauge invariant expression for the conductivity. Such
calculations, while formally rigorous, hide the physical origin
of elementary microscopic processes. This complicates the
analysis and the bookkeeping of the relevant contributions.

The alternative approach is based on the classical
Boltzmann equation applied to the electron transport [23–25].
It can be justified by the fact that in sufficiently clean materials
one can look at the transport from the basis of wavepackets
rather than Bloch waves. In the dilute disorder limit, a
wavepacket is not destroyed during long time and behaves in
many respects as a classical particle. One can trace the motion
of the wavepacket in external fields and describe it in terms that
have a clear meaning in classical physics.
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In crystals, electrons cannot be considered as free particles
because they strongly interact with a periodic crystal potential.
As we will see in following sections this creates interesting
ingredients in the wavepacket dynamics but initially, we will
describe the semiclassical theory free of these complications
assuming that electrons do not interact with the crystal
potential and with each other [23]. The impurity free
Hamiltonian of such an electron system has plain wave
eigenstates

ψk(r, t) = 1

L D/2
eik·r−i k2

2m t , (2)

where L is the size of the system, D is its spatial dimension and
k = |k|. To construct a wavepacket with a well defined average
momentum kc , plain waves (2) should be superposed with the
envelope function a(k), sharply peaked near the point k = kc

so that
∫

dDk|a(k)|2k = kc, then the wavepacket vector can
be written in the coordinate representation as follows:

�kc(r, t) =
∫

dDk

L D/2
a(k) exp

{

i

(

k · r − k2t

2m

)}

. (3)

The normalization condition requires that

〈�kc |�kc〉 =
∫

dDr�∗
kc
(r, t)�kc (r, t)

=
∫

dDk|a(k)|2 = 1 (4)

and the index kc tells that the wavepacket has this
average momentum, namely, switching to the momentum
representation one can find that

kc = 〈�kc |k̂|�kc〉 =
∫

dDk
∫

dDk′a(k)a∗(k′)〈k′|k̂|k〉

=
∫

dDk|a(k)|2k. (5)

The velocity of the free wavepacket center of mass can be
derived as follows:

ṙc = d

dt
〈�kc |r̂|�kc〉 = d

dt

{∫
dDr
L D

∫
dDk

∫
dDk′

× a(k)a∗(k′)e−ik′r
(

reikr
)

ei (k
′ )2 t
2m −i k2 t

2m

}

= d

dt

{∫
dDk

∫
dDk′a(k)a∗(k′)

×
( ∫

dDr
L D

e−ik′r
(

− i
∂

∂k
eikr

))

ei (k
′ )2 t
2m −i k2 t

2m

}

= d

dt

{∫
dDk

∫
dDk′a∗(k′)

× δ(k − k′)ei (k
′ )2 t
2m i

∂

∂k
[a(k)e−i k2 t

2m ]
}

= d

dt

{∫
dDk|a(k)|2 kt

m

}

+ d

dt

{∫
dDka(k)∗

(−i∂

∂k
a(k)

)}

= kc

m
. (6)

In the external uniform electric field, the Hamiltonian
operator is Ĥ = k̂2/2+eE·r̂ and the average of the momentum

is changing with time

k̇c = d

dt
〈�kc |k̂|�kc〉E

= d

dt

{∫
dDk

∫
dDk′a(k)a∗(k′)〈k′|eiĤ t k̂e−iĤ t |k〉

}

=
∫

dDk
∫

dDk′a(k)a∗(k′)

× 〈k′|[k̂,−ieE · r̂]|k〉 = −eE, (7)

where k̂ and r̂ are, respectively, quantum mechanical
momentum and coordinate operators. From (7) it follows
that under the action of only the electric field the wavepacket
will accelerate indefinitely. This never happens in metals
because of scatterings on impurities, that randomly change the
direction of motion. It is impossible then to trace trajectories
of all wavepackets and the natural language to describe such a
system is provided by the semiclassical Boltzmann equation.

In classical physics the Boltzmann equation is the
evolution equation for the particle distribution in the phase
space. We will always assume in this work that the
system is spatially uniform on scales much larger than the
distance between scatterers, where the classical Boltzmann
equation for scatterings on elastic impurities has the following
form [24, 25]:

∂ fk

∂ t
− eE

∂ fk

∂k
= −

∑

k′
ωk,k′( fk − fk′). (8)

The rhs of (8) is called the collision term. For
electrons that interact only with static impurities but not with
each other the collision term is a linear functional of the
distribution function. This linearity is not affected by the
Pauli principle [27]. However, when many-body interactions
contribute to the collision term the Pauli principle leads to
contributions proportional to fk(1 − fk′) etc. We will not
consider the latter case in our discussion. The scattering
rate ωk,k′ depends on details of the scattering potential and
should be found separately. For a sufficiently smooth impurity,
one can use wavepacket equations to find the scattering
cross-section by purely classical means but, in most realistic
applications, a smooth potential approximation does not hold
for an impurity. Often the opposite limit of a δ-function type of
a potential is considered as a reasonable assumption. This fact
jeopardizes the applicability of the semiclassical approach but
quantum mechanics provides a simple solution. There is the
rule that connects the quantum mechanical scattering matrix
with the classical scattering rate. This rule is called the golden
rule of quantum mechanics. For a weak impurity potential in
the lowest Born approximation it reads [26]

ωk,k′ = 2π

h̄
|Vk,k′ |2δ(εk − εk′), (9)

where εk is the kinetic energy of an electron with the
momentum k and Vk,k′ is the matrix element of the disorder
potential between two states of an electron before and after
the scattering. In what follows we will assume that h̄ =
1. The potential of randomly placed impurities is V (r) =∑

i v(r − Ri ), where i enumerates impurities, Ri are their
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random positions and v(r − Ri ) is the potential of the single
impurity with its center placed at Ri . One can show [27], that
for such a disorder 〈|Vk,k′ |2〉dis = n|vk−k′ |2, where n is the
impurity concentration and vq is the Fourier transform of the
single impurity potential at Ri = 0.

Together, the golden rule (9) and the classical Boltzmann
equation (8) allow to perform the quantitative self-consistent
calculation of the conductivity. Assume that the electric field
is weak and look for the solution of the Boltzmann equation in
the form

fk = feq(εk)+ gk, (10)

where feq(εk) is the equilibrium distribution, which depends
only on the energy of a particle and does not contribute to the
current and gk is the correction linear in E. At the steady state
the term with the partial time derivative is zero and to linear
order in E the correction to the distribution satisfies the time
independent equation

−eE · vk
∂ feq(εk)

∂εk
= −

∑

k′
ωk,k′(gk − gk′), (11)

where in our case vk = k/m. Looking for the solution in the
form gk = g0E · k, one can find a self-consistent result

gk = eτtrE · k
m

· ∂ feq(εk)

∂εk
, (12)

where
1

τtr
=

∑

k′
ωk,k′(1 − cos(k,k′)), (13)

τtr is called the transport lifetime. The electric current is given
by the expression

J = −e
∑

k

gkvk. (14)

Using that at zero temperature ∂ feq(εk)

∂εk
= −δ(εF − εk) one can

arrive at the following expression for the conductivity along the
electric field in the 2D electron system

σxx = e2kFvFτtr

4πm
. (15)

The important point is that the result (15) is rigorous in
the sense that when conductivity calculations are performed
by formally exact quantum mechanical techniques, such as
the summation of disorder averaged Feynman diagrams in the
Kubo formula in the diffusive regime and disregarding higher
order effects, such as the weak localization, one arrives at the
same quantitative result.

1.2. Difficulties with the semiclassical approach in
application to the AHE

The above discussion of free electrons demonstrates that it
is possible to derive transport coefficients using the classical
Boltzmann equation. The power of this approach is in its
transparency. It operates only with concepts that have simple
classical interpretations. There is no problem with the gauge
invariance.

Because of its simplicity this approach is ideal for
introducing to the physics of the electron transport. Many
concepts of solid state physics can be explained with a
sufficient rigor without using complicated Green function
techniques. Also, the semiclassical approach is needed to
develop the scientific intuition about the model. Having done
calculations for a simple problem one can be interested in
further more complicated phenomena. It is always good to
have a preliminary expectation about the final result. The
semiclassical approach allows to make such an incite, while
it is considerably harder with other techniques.

Certainly, the semiclassical approach has limitations but
it should not be considered as valid only in the classical
limit. It makes rigorous estimates even for impurities that
have no analog in classical physics, such as for delta-function
potentials. Hence, its domain of validity is larger. However,
in applications to the AHE, the semiclassical theory faced with
a number of complications. Sometimes it has been speculated
that the AHE is a purely quantum mechanical phenomenon that
cannot be explained by classical means [28]. We will discuss
later that it is not true but first, I explain the main arguments
that created this skepticism.

In real crystals electrons are not free particles. They
interact strongly with the periodic potential of the lattice. It
has been well known that the lattice periodicity does not result
in random scatterings. The Bloch theorem guarantees that
eigenstates of the electron Hamiltonian in a perfect crystal have
the form

ψnk(r, t) = 1

L D/2
eik·r−iεk t unk(r), (16)

where unk(r) is a periodic in the elementary unit cell function.
Due to this simplification, one can describe other interactions,
such as scatterings on lattice imperfections with an effective
Hamiltonian, not dealing directly with the lattice potential. The
price for this is that the wavefunction has generally a nontrivial
periodic part unk(r) and the dispersion is no longer quadratic,
εk �= k2/(2m) (usually it is possible to approximate it near
important symmetry points by a quadratic dependence with
a renormalized mass). The spectrum is also not everywhere
continuous and splits into bands.

The multiple band structure plays a very important role
in the theory of the AHE. Because of it, operators of many
observables are matrices in the band index space, which can
have nonzero off-diagonal (inter-band) elements. One of the
simplest models of this kind, shown in figure 1, is the Rashba
coupled 2D electron system with an additional out of plane
Zeeman interaction. Its Hamiltonian reads

Ĥ0 = k2

2m
+ λ(kyσ̂x − kx σ̂y)−�σ̂z, (17)

where σ̂i are Pauli operators. This Hamiltonian describes two
bands with different dispersions

ε± = k2

2m
∓

√
(λk)2 +�2, (18)

where ± stands for major/minor band indexes. The velocity
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Figure 1. The 2D electron system described by the Hamiltonian (17).

(This figure is in colour only in the electronic version)

operator v̂ = ∂ Ĥ0/∂k has the following components:

v̂x =
(

kx/m iλ
−iλ kx/m

)

,

v̂y =
(

ky/m λ

λ ky/m

)

.

(19)

It is straightforward to check that neither v̂x nor v̂y commute
with the Hamiltonian. This means that in the Bloch basis of
eigenstates of the Hamiltonian (17), the velocity operator still
has nonzero off-diagonal elements, for example,

v̂x =
(
v++

x v+−
x

v−+
x v−−

x

)

, v+−
x �= 0, v−+

x �= 0. (20)

The semiclassical interpretation of diagonal (intra-band)
matrix elements of the velocity operator is trivial. If one
prepares a wavepacket made of Bloch states of one band, the
free motion of such a wavepacket will be the corresponding
diagonal velocity. The off-diagonal velocity matrix elements
are more subtle. They do not affect the motion of a free
wavepacket. Only if a coherence among states of different
bands is introduced due to some perturbation can their
expectation values become nonzero. This mixing can be
produced e.g. by an applied external electric field. Due to
the Bloch vector dependence of the periodic part of the Bloch
wave, the coordinate operator generally has nonzero inter-band
matrix elements

〈unk|r̂|un̄k〉 =
〈

unk

∣
∣
∣
∣i
∂un̄k

∂k

〉

�= 0, (21)

where n �= n̄ and 〈unk|un′k′ 〉 is understood as the integral of the
product of periodic parts of Bloch states over the unit cell or,
in the case of the Rashba Hamiltonian (17), it means the scalar
product of spinor parts of Hamiltonian eigenstates.

When the electric field is applied, the total Hamiltonian
has a contribution ĤE = eE · r̂, that not only accelerates
wavepackets, but also mixes states of different bands. Because
of this, the expectation of inter-band parts of velocity operator
components becomes nonzero. In turn, this means that
in the applied electric field the instantaneous velocity of
the wavepacket is no longer a corresponding diagonal part
of the velocity operator, but contains an extra (anomalous)
component. The situation reminds the chiral anomaly in the
quantum field theory [29] where the noncommutativity of the
axial current operator with the Hamiltonian leads to effects,
unexpected from the Hamiltonian symmetries.

Similarly to the electric field, the impurity potential also
mixes states of different bands. For example, the point-like
impurity potential V (r) = V0δ(r) in the chiral basis of the
Rashba 2D electron gas has the following matrix form:

V̂k,k′ = V0

L2
·
( 〈u+

k |u+
k′ 〉 〈u+

k |u−
k′ 〉

〈u−
k |u+

k′ 〉 〈u−
k |u−

k′ 〉
)

, (22)

with nonzero off-diagonal matrix elements (see [12] for
explicit expressions). This means that the impurity role does
not reduce to a simple instantaneous change of a direction
of the particle motion. When a wavepacket passes near such
an impurity its wavefunction becomes distorted and the inter-
band part of the velocity acquires a nonzero expectation due
to the local band mixing. Thus in the vicinity of impurities
wavepackets move along unusual trajectories.

The AHE was found to be related exactly to that type
of microscopic processes. Hence the construction of the
semiclassical theory of this effect faced with the problem
of how to include the inter-band coherence into the purely
classical description.

2. Early theories of the AHE

The first theoretical proposal to relate the AHE and the spin–
orbit interaction was made by Karplus and Luttinger [30].
They started from the fact that due to the relativistic corrections
the effective Hamiltonian of an electron in a periodic lattice
potential V (r) has an extra contribution due to the spin–orbit
interaction

ĤSO = − 1

4m2c2
σ̂ · (p × ∇V ). (23)

This part of the Hamiltonian modifies Bloch wavefunctions
of electrons, introducing specific Bloch vector dependence in
their periodic parts unk(r). When the electric field is applied
the corresponding term in the Hamiltonian

ĤE = eE · r̂ (24)

has nonzero matrix elements between states of different bands

〈unk|ĤE |un̄k〉 = ieE ·
〈

unk

∣
∣
∣
∣
∂un̄k

∂k

〉

�= 0, (25)

where n̄ �= n. This band mixing ultimately leads to an
unusual linear in the electric field contribution to the transverse
velocity.

The spin–orbit coupling alone does not lead to the AHE
because the anomalous transverse velocity, even if present,
would have different signs in different degenerate bands unless
the time-reversal symmetry is broken. In ferromagnets this
symmetry breaking appears spontaneously due to the exchange
interaction, which is often approximated in theoretical models
by the mean Zeeman-like field acting on electrons spins. In
the simplest picture of the AHE this Zeeman field creates
a population imbalance between bands with opposite signs
of the anomalous velocity thus leading to the Hall current,
proportional to the magnetization. This scenario is not
always correct. For example, the recent research showed that

5
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often the strong AHE appears near points of the spectrum
where the magnetization field lifts degeneracies in the band
structure [19], leading to resonance features at the Fermi
energies in their vicinity.

Karplus and Luttinger did not expect that their theory
would be the final answer to the AHE puzzle. The reason
was that the current they found was not gauge invariant, and
thus could not describe the real observable. They pointed
out, however, that the magnitude of the found expression
and its dependence on the impurity concentration were in a
good agreement with results of experimental measurements,
thus suggesting that their theory captured basic microscopic
physics behind the AHE and the spin–orbit coupling and the
magnetization must be the forces, driving the effect.

Their theory was subsequently criticized by Smit [31, 32],
who made the first effort to design the gauge invariant theory
of the effect. Smit agreed with that the spin–orbit coupling is
responsible for the AHE but suggested a different mechanism.
His approach was semiclassical in spirit. Smit’s suggestion was
to look at the evolution of a wavepacket, as a semiclassical
object and to design a Boltzmann-like equation to describe the
evolution of the wavepacket distribution function in the phase
space. Today his name is usually associated with only one of
the contributions to the Hall current, called the skew scattering,
which was a new effect, not discussed by Luttinger at that
time. However, in addition to the idea of the skew scattering,
Smit discussed other contributions. Tracing the evolution of
a wavepacket he also found the anomalous velocity in the
external field [32], though he did not think that this velocity
contributes to the Hall conductivity because, he thought, it is
exactly canceled by another effect.

Smit pointed out that the anomalous velocity follows from
the change of the polarization of wavepackets by showing
that the average of the coordinate of the wavepacket contains
generally an additional component A due to the Bloch vector
dependence of the periodic part of the Bloch wavefunction

rc(k, t) = vkt + A = ∂εk

∂k
t +

〈

uk

∣
∣
∣
∣i
∂

∂k
uk

〉

. (26)

The second part A = 〈uk|i ∂∂k uk〉 depends on k. According
to Smit, when the electric field accelerates the wavepacket,
the vector k changes and consequently this changes the
polarization A. The wavepacket becomes deformed. This
evolution of the polarization leads to an additional charge
transport in the transverse to the electric field direction. Smit
pointed out that A is not gauge invariant and rather its curl

F = curlk A (27)

should enter the final result. In modern terminology A and
F are called the Berry connection and the Berry curvature,
respectively.

Smit’s objection to the relevance of the anomalous
velocity to the AHE conductivity also deserves a discussion.
Smit pointed out that in the DC limit wavepackets cannot
be constantly accelerated. While the electric field changes
the polarization by accelerating wavepackets, scatterings on
impurities produce on average an exactly opposite change of

k if the system reaches the steady state. Thus Smit concluded
that coordinate shifts at scatterings should have an exactly
opposite effect on the wavepackets polarization and thus on
the AHE conductivity. The coordinate shifts at scatterings,
first introduced by Smit [31], indeed are the important part of
the modern AHE theory. They were named ‘side-jumps’ by
Berger [33–35] who studied the effect in more detail.

Smit’s work was the precursor of the modern semiclassical
approach. He made the first effort to understand the anomalous
Hall conductivity in classical terms such as corrections to the
velocity of wavepackets, coordinate shifts at scatterings (side-
jumps) and asymmetric scatterings at an impurity potential
(skew scatterings). All these ideas are currently incorporated in
the theory, although his conclusion about the exact cancelation
of the intrinsic and the side-jump contributions is not supported
by rigorous calculations.

There are two main reasons why his arguments fail. One
is that the ‘polarization’ A is not a good quantum number
and, in fact, is not gauge invariant because it changes under
an arbitrary momentum dependent change of the phase in the
definition of Bloch states; therefore one cannot apply classical
balance arguments to it. The second point, omitted by Smit, is
that the side-jump can lead to the asymmetry of the distribution
function even without an asymmetry in the collision term
kernel in the Boltzmann equation. Such a distribution
asymmetry is rather due to the change of the kinetic energy that
particles experience after the side-jump in the presence of an
electric field. The corresponding correction to the distribution
function was named the anomalous distribution [53]. When
coupled to the conventional part of the velocity ∂εk/∂k the
anomalous distribution leads to the Hall current.

2.1. Luttinger’s rigorous theory: the quantum Boltzmann
equation

In 1958 Luttinger published a detailed study of the AHE [36]
based on the rigorous quantum mechanical approach that he
had designed with Kohn in a previous publication [27]. Later
this approach was generalized by Lyo and Holstein to the
regime of ac external fields [37]. Luttinger’s theory was correct
but it did not find the general acceptance as a calculation tool
and later many researchers have been looking for alternative
techniques. The reason was that Luttinger’s approach is
very nontransparent. It involves many equations that self-
consistently determine nongauge-invariant values.

In this section I will try to introduce and explain
Luttinger’s paper. Rather than directly following his steps, the
goal here is to show that it is possible to explain Luttinger’s
derivation with a simple schema and a different notation,
according to which it is easy to classify AHE contributions
in Luttinger’s approach and to make connections with the
semiclassical theory.

Luttinger starts with the evolution equation for the density
matrix

∂ρ̂

∂ t
= i[ρ̂, Ĥ ], (28)

6
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where Ĥ is the Hamiltonian that includes both the disorder part
and the electric field

Ĥ = Ĥ0 + V (r̂)+ eEx x̂ . (29)

In the stationary state one should require that

∂ρ̂

∂ t
= 0. (30)

If the solution of (28) is found, the transverse electric
current is given by the expression

Jy = −e Tr[v̂y ρ̂]. (31)

The hats mean that objects are matrices in the band index
space. Since the velocity operator v̂y is diagonal in the
momentum space, only the momentum-diagonal part of ρ̂ is
needed to calculate the current. However, v̂y can have off-
diagonal elements in the band index space. From (28) and (30)
Luttinger derives the analog of the Boltzmann equation, which
contains terms that depend only on the diagonal in the
momentum space part of the density matrix. Schematically, it
is useful to group terms that appear in his quantum Boltzmann
equation as follows:

E[DT ](ρ̂eq)− i[Ĥ0, ρ̂neq] = Icol(ρ̂neq), (32)

where Ĥ0 is the part of the Hamiltonian, independent of the
electric field and of the disorder potential (Luttinger worked
in the basis of Bloch states that diagonalize H0). ρ̂eq is the
equilibrium part of the density matrix (in the presence of the
disorder but in the absence of the electric field) and ρ̂neq is the
correction, linear in E . [DT ] means the ‘driving term’ which
explicitly couples to the electric field. In the Bloch basis the
driving term can be written as a series in powers of the disorder
potential V , that starts at V 0.

[DT ](ρ̂eq) = [DT ](0) + V 2[DT ](2) + · · · . (33)

The collision term for elastic scatterings on static
impurities is linear in ρ̂neq and also can be written as the series
that starts at V 2.

Icol(ρ̂neq) = V 2 I (2)col (ρ̂neq)+ V 3 I (3)col (ρ̂neq)

+ V 4 I (4)col (ρ̂neq)+ · · · . (34)

This suggests to look for the solution for the nonequilib-
rium part of the density matrix in the form of a series in powers
of V . Separating terms of the same order in V we find the chain
of equations. The first equation allows to determine the largest
term in the expansion of ρ̂neq and others allow to express higher
corrections through the lower ones. From (32) to (34) and the
linearity of Icol as a functional of ρ̂neq it follows that this series
begins at the term of order V −2, i.e.

ρ̂neq = V −2ρ̂(−2)
neq + V −1ρ̂(−1)

neq + V 0ρ̂(0)neq + · · · . (35)

Simple power counting shows that to determine the
correction of order V −2 it is enough to keep the driving term at

zeroth order in V and the first term in the collision part of (34),
i.e.

E([DT ](0))diag = (I (2)col (ρ
(−2)
neq ))diag, (36)

where the index diag means that we take only the band-
diagonal part of the expression. Luttinger found that ρ̂(−2)

neq is
diagonal in the band index and does not contribute to the Hall
current. It, however, makes the dominating contribution to the
longitudinal current and is needed for further calculations.

Next order contribution ρ̂(−1) satisfies the equation

I (2)col (ρ̂
(−1)
neq )+ I (3)col (ρ̂

(−2)
neq ) = 0, (37)

where ρ̂(−2) is already found by solving (36).
It turns out that ρ̂(−1)

neq , found from (37), is still diagonal
in band indexes and contains the antisymmetric contribution
in the transverse to the electric field direction. It leads to the
transverse conductivity that, like ρ̂(−2)

neq , depends as 1/n on the
impurity concentration n.

At zeroth (next) order in the disorder strength, both inter-
band and intra-band matrix elements become important. One
can separate four distinct parts.

ρ̂(0)neq = ρ̂int + ρ̂s j + ρ̂adist + ρ̂sk, (38)

where the first two terms are purely off-diagonal and the other
two are diagonal in band indexes. These contributions to the
density matrix satisfy following equations.

E([DT ](0))off-diag − i[Ĥ0, ρ̂int] = 0. (39)

Note that terms in (39) do not depend on the impurity potential.
The equation for ρ̂s j reads

−i[Ĥ0, ρ̂s j ] = (I (2)col (ρ̂
(−2)
neq ))off-diag. (40)

ρ̂s j is purely off-diagonal in band indexes and appears because
the collision term I (2)col (ρ̂

(−2)
neq ) has a nonzero off-diagonal part.

The next contribution is diagonal and follows from the
compensation between the higher order driving term and the
collision part.

E[DT ](2) = I (2)col (ρ̂adist). (41)

Finally, there is a contribution due to the compensation
between two collision terms

I (2)col (ρ̂sk)+ I (4)col (ρ̂
(−2)
neq ) = 0. (42)

All four parts of the nonequilibrium density matrix in (38)
contribute to the Hall current via (31). Interestingly, since
they are formally of zeroth power in V and the velocity
operator does not depend on V the resulting conductivity due to
these contributions for a Gaussian correlated disorder becomes
independent of the impurity concentration.

2.2. Noncommuting coordinates

Luttinger’s theory is both complete and well justified quantum
mechanically. However, his approach features the same
problems as other rigorous quantum mechanical techniques in
applications to the AHE. It does not explain what is happening
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in simple terms. What can be concluded from his work is
that off-diagonal elements of the density matrix and of the
velocity operator play the important role. Separately, they are
not gauge invariant and only their product produced finally
a gauge invariant current. Because of these complications,
Luttinger did not discuss the semiclassical meaning of the
derived contributions.

To resolve this issue, in 1959 Adams and Blount made an
effort to create a semiclassical theory based on the introduction
of noncommuting coordinates [38].

The straightforward semiclassical approach, based on
preparing a wavepacket from states of the same band, may fail
when the electric field is applied. Since the electric field mixes
states of different bands, a part of the initially free wavepacket
starts fast oscillations with frequencies ω ∼ εn,k − εn̄,k in
comparison to the rest of it. Such a wavepacket does not
satisfy the basic criteria of being a classical object because it
would be composed of parts with strongly different oscillation
frequencies.

The resolution of this problem was first suggested by
Adams and Blount [38]. The off-diagonal part of the
Hamiltonian due to the electric field can be considered as a
periodic field that modifies the Bloch wavefunctions. Thus
one can choose another Bloch basis, in which the term with
the electric field has no inter-band matrix elements. To linear
order in E = Ex x̂ the periodic part of such modified Bloch
states reads

|u′
nk〉 = |unk〉 + ieEx

∑

n̄ �=n

〈un̄k| ∂unk
∂kx

〉
εnk − εn̄k

|un̄k〉, (43)

then at t = 0 one can prepare a new wavepacket

� ′
nkc
(r) =

∫
dDk
L D/2

a(k) exp{i(k · r)}|u′
nk〉, (44)

which in the external electric field does not split right away
into differently oscillating components. It is now instructive
to calculate the velocity of the wavepacket in the transverse to
the electric field direction. Let the electric field point along the
x-direction and Ĥ = Ĥ0 + eEx x̂ is the full Hamiltonian (we
do not consider impurities yet). Then the wavepacket evolves
according to

� ′
nkc
(r, t) = e−iĤ t� ′

nkc
(r). (45)

The transverse velocity is calculated as follows:

vy = d

dt
〈� ′

nkc
(r, t)|ŷ|� ′

nkc
(r, t)〉

= 〈u′
nk| − i

[

i
∂

∂ky
, H0

]

|u′
nk〉

= ∂εnk

∂ky
+ ieEx

(〈
∂unk

∂ky

∣
∣
∣
∣
∂unk

∂kx

〉

−
〈
∂unk

∂kx

∣
∣
∣
∣
∂unk

∂ky

〉)

= ∂εnk

∂ky
− eEx Fn

z , (46)

where Fn is called the Berry curvature of the Bloch band with
index n and

Fn
z = Im

(〈
∂unk

∂ky

∣
∣
∣
∣
∂unk

∂kx

〉

−
〈
∂unk

∂kx

∣
∣
∣
∣
∂unk

∂ky

〉)

(47)

is its z-component.

The first term in the last line of (46) is just the usual
velocity that equals the diagonal part of the velocity operator,
while the rest of the expression is called the anomalous
velocity. This anomalous contribution is ultimately responsible
for the intrinsic AHE.

There is sometimes a misunderstanding about how the
noncommuting coordinates appear in the theory. Sometimes
it is simply stated that this happens to coordinate operators
after the unitary transformation that switches to the basis
of Bloch states. This, of course, is not true because
the unitary transformation alone cannot make commuting
operators noncommuting. The reason is more subtle. In
the standard Bloch basis with the periodic part |unk〉 that
diagonalizes Ĥ0 the coordinate operator has the form

r̂ = i
∂

∂k
+ A(k)+ X̂, (48)

where A(k) is diagonal in band indexes and its elements are
the Berry connections of Bloch bands and X̂ is purely off-
diagonal in band indexes. If we want to work with a modified
Bloch band with periodic parts of Bloch states given in (43)
we should switch to that new modified basis, i.e. to make
the additional rotation which transforms |unk〉 into |u′

nk〉. In
that basis Ĥ0 is no longer pure diagonal and contains the off-
diagonal component that cancels with eE · X̂. Thus in the
modified basis the full Hamiltonian has the form

Ĥ = Ĥ ′
0 + eE ·

(

i
∂

∂k
+ A(k)

)

, (49)

where now Ĥ ′
0 is, in fact, a new operator, that has the

same matrix form in the modified basis (43) as the old free
Hamiltonian Ĥ0 in the original Bloch basis |unk〉.

In the basis (43) the Hamiltonian (49) is by construction
diagonal in band indexes including terms linear in the electric
field. Thus it appears to be useful to regroup the terms
in the original Hamiltonian so that in the modified basis it
looks like we still have the unperturbed band-diagonal part Ĥ ′

0
but instead of the usual coordinate operator the electric field
couples only to its projection on the subspace of a given band.
The same observation holds if we consider the average of any
operator over the state of the wavepacket (44), prepared from
the modified Bloch states

〈�nkc(r, t)|r̂|�nkc(r, t)〉 ≈ iδ′(k − kc)+ An(kc), (50)

where we used the fact that the inter-band component of the
coordinate operator has a zero expectation value and higher
order terms in the electric field can be disregarded.

Summarizing, if we consider the evolution of the
wavepacket made of modified Bloch states, mathematically,
instead of working with band mixing by the electric field, we
can assume that we still deal with the original free diagonal
Hamiltonian Ĥ0 but coordinate operators should be substituted
by their projected versions

r̂ → r̂c = i
∂

∂k
+ A(k). (51)

8
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The anomalous velocity appears now as the result of the
noncommutativity of such modified coordinate operators. Thus
for the electric field along the x-axes the transverse velocity
contains a component

v̂a
y = −i[ŷc, eEx x̂c] = −ieEx

[

i
∂

∂ky
+ Ay, i

∂

∂kx
+ Ax

]

= −eEx

(
∂Ay

∂kx
− ∂Ax

∂ky

)

= −eEx Fz . (52)

Adams and Blount pointed that their approach can also be
applied to the scattering problem on the impurity potential if
the latter is sufficiently smooth so that a moving in its field
wavepacket feels only a weak gradient. One can truncate the
off-diagonal part of the impurity potential V (r̂) → V (r̂c) so
that the wavepacket acquires an additional velocity

va
i = −i[r̂ i

c, r̂
j

c ] ∂V

∂r j
c

. (53)

The comprehensive discussion of the noncommuting coordi-
nates in Bloch bands can be found in [39]. The theory of
Adams and Blount was applied by Chazalviel [40], Nozieres
and Lewiner [41], Berger [33–35] and by Lyo and Holstein [42]
to the AHE in III–V n-type semiconductors. Because of the
degeneracy of electronic bands in their model, they had to ex-
tend the theory to the case, which today is called ‘bands with
a non-Abelian Berry curvature’. They started from the stan-
dard 8-band model with a spin–orbit interaction. Due to the
hybridization the conducting bands are also influenced by the
spin–orbit coupling. Similarly to the above discussion, Chaza-
lviel and Nozieres projected coordinate operators to the space
of only two conducting bands. The problem, however, is that
the latter have the same energy dispersions and thus the sub-
sequent separation of conducting bands is impossible and one
has to keep the off-diagonal elements of the coordinate opera-
tor in this subspace. Thus the Berry connection and the Berry
curvature become 2 × 2 matrices.

r̂c = i
∂

∂k
+ λŝ × k, (54)

F = 2λŝ, (55)

where ŝ is the pseudospin operator acting in the space of the
conducting bands index.

This non-Abelian case, however, is trivial because the
Berry curvature does not depend on the Bloch vector. If one
considers a 2D electron system, only the conserved out of
plane component of the pseudospin enters the Hamiltonian and
the problem reduces to two separate bands with the effective
impurity potential

V (r) → V (r)+ λŝ · (k × ∇V (r)). (56)

The second term in (56) is functionally similar to the spin–
orbit coupling due to relativistic corrections (23) but with a
different strength λ, which can be considered as a renormalized
spin–orbit coupling constant. Formally, corrections to the
impurity potential and to the coordinate operator (54) and (56)
should be included in the full Hamiltonian of the 2D electron

gas, together with the Rashba coupling. However, their effects
are usually weak because of the weakness of the parameter λ
in (56), that makes the corresponding Hall conductivity also
small [40]. In contrast, the Hall effect due to the Rashba
coupling is nonperturbative. For example, the estimates of the
intrinsic contribution for the Rashba coupled electron gas show
the strength close to the universal value e2/2h in some range
of parameters [5]; so the effect of the Rashba term on the AHE
is expected to dominate, although at large Fermi energies there
can be a crossover between effects of two types of spin–orbit
couplings.

The weakness of the Hall effect due to the coupling λ
in (56) can be understood in terms of topological defects in
the band structure. Nonzero λ is induced by a weak mixing
of p-type orbitals to states of the conducting bands; hence it
is suppressed, approximately inversely proportionally to the
cubic power of the large gap between conducting and valence
bands [40]. In contrast, the Rashba coupling, even when
small, creates the topological defect centered directly inside the
conducting bands. At Fermi energies close to this ‘resonance’
point the AHE is nonperturbative in the spin–orbit coupling
and hence is very strong.

Despite the partial success of Adams and Blount’s
approach, their semiclassical theory has strong limitations.
One is the difficulty to apply it to a short range impurity
potential. Such a potential destroys the wavepacket and thus
cannot be treated in a weak gradient approximation. The
second problem is that this approach still operates with not
strictly classical concepts such as noncommuting coordinates.
This complicates the interpretation of other objects in the
semiclassical theory such as the distribution function. It also
complicates the derivation of the skew scattering contribution.
Thus in all publications following this approach, the important
part of the skew scattering contribution was missing. That
part is parametrically similar to the side-jump contribution and
cannot be disregarded. For example, Chazalviel’s [40] and
Nozieres and Lewiner’s [41] conclusion that the total impurity
concentration independent Hall conductivity in their model is
the same in magnitude but has the opposite sign from the
intrinsic contribution is wrong because of this omission.

3. The Berry phase theory of the AHE

Sundaram and Niu [43] designed a very powerful and unifying
framework to study the wavepacket kinetics. Their approach
is based on the derivation of the effective Lagrangian of a
wavepacket moving in weak fields. The idea of the approach is
that the time-dependent Schrödinger equation for a wavepacket
is realized from the variational principle with the Lagrangian
given by

L = 〈�kc |i
d

dt
− Ĥ |�kc〉. (57)

The time dependence of the wavepacket implicitly is contained
in the time dependence of its average momentum kc and
coordinate rc = 〈�kc |r̂|�kc〉 and possibly in other explicitly
time-dependent parameters in the system. This allows to
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rewrite the time derivative in (57) in terms of ṙc and k̇c

L = kcṙc − ε(kc, rc)+ k̇c

〈

u

∣
∣
∣
∣
∂u

∂kc

〉

+ ṙc

〈

u

∣
∣
∣
∣
∂u

∂rc

〉

+
〈

u

∣
∣
∣
∣
∂u

∂ t

〉

, (58)

where |u〉 is the unit cell periodic part of the Bloch wave.
The first two terms in the Lagrangian (58) are the same as

in a typical Lagrangian of a classical particle with the classical
mechanical Hamiltonian Hcl = ε(kc, rc). The other terms
are geometric, in the sense that their contribution to the action
depends on the trajectory in the phase space but not on the rate
of the motion along this trajectory. This is the feature of the
Berry phase in quantum mechanics and effects of the last three
terms in (58) can be called Berry phase effects.

The Lagrangian formulation provides a fully gauge
invariant approach to the study of the wavepacket dynamics.
It is now easy to find the equations of motion in an arbitrary
potential with a weak gradient in a magnetic field B by varying
the action over the trajectory. For the motion in a band with a
dispersion εk the result reads

ṙc = ∂εkc

∂kc
− k̇c × F,

k̇c = −eE − ∇V (rc)− eṙc × B,

(59)

where F is the Berry curvature of the Bloch band. Wavepacket
equations show that the Berry curvature can be considered
as an unusual magnetic field acting in the momentum space.
However, unlike the magnetic field in electrodynamics, which
is a pure curl, the Berry curvature originates from a source. In
electrodynamics, a magnetic field with such properties would
originate from magnetic monopoles. Their analogs in Bloch
bands are the points of exact crossings of band dispersion
curves [39, 19].

The wavepacket equations can be generalized when the
motion in degenerate bands is considered. If states of
degenerate bands mix coherently the evolution becomes more
complicated. The state of the wavepacket should then be
considered having finite amplitudes in both bands [44, 45]

|�kc〉 =
∫

dk a(k)[η1|�1〉 + η2|�2〉], (60)

where |�i〉 (i = 1, 2) are basis functions of the wavepackets in
each band. The coefficients ηi enter the effective Lagrangian
and should be considered as independent variables. Their
dynamics was found to be according to equations

i
dηi

dt
=

(

Hi j − k̇c

〈

ui

∣
∣
∣
∣i
∂u j

∂kc

〉)

η j , (61)

where Hi j are matrix elements of the Hamiltonian.

3.1. The anomalous Nernst effect

The recent triumph of the wavepacket approach was the
first semiclassical explanation and the quantitative theory of
the intrinsic anomalous Nernst effect (ANE), which is the

AHE driven not by an external electric field but rather by
the temperature gradient. The theory of the ANE [46]
is based on the previous understanding of the intrinsic
angular momentum [43, 47] of a wavepacket and also on the
observation [48] that the wavepacket equations (59) lead to
the specific expression for the phase space volume. When
considering the continuous limit it reads

∑

k

→
∫

[dk](1 + eB · F). (62)

The physically measurable transport current is defined by

j = J − ∇ × M(r), (63)

where J is the microscopic current and M(r) is the
magnetization density. The latter can be found from the grand
canonical potential in the magnetic field

F = − 1

β

∑

k

log(1 + e−β(εM −μ))

= 1

β

∫
[dk](1 + eB · F) log(1 + e−β(εM −μ)), (64)

where β = 1/kBT and εM = ε(k) − m(k) · B is the electron
energy in the magnetic field coupled to the magnetic moment
of a wavepacket m(k) = −i(e/2)〈∇ku| × [Ĥ(k)− εk]|∇ku〉.

The magnetization is the magnetic field derivative of the
thermodynamic potential

M(r) = −
(
∂F

∂B

)

μ,T

. (65)

The expression for the intrinsic Hall current, induced by a weak
temperature gradient originates from the phase space volume
correction in (64). Substituting (65) and (64) into (63) one can
find [46]

jint = −e
∇T

T
×

∫
[dk]F[(εM − μ) f0(εk)

× kBT log(1 + e−β(εM −μ))]. (66)

3.2. Wavepacket theory of intrinsic contribution and the
side-jump effect

The intrinsic contribution to the AHE is a straightforward
consequence of the anomalous velocity term in wavepacket
equations (59). Under the action of the electric field, all the
electrons in the Fermi sea will shift in the transverse direction,
leading to the intrinsic Hall current [1]

Jint = −e2E ×
∫

[dk] fkF, (67)

where fk is the electron distribution function in the given band
and F is the Berry curvature.

Sinitsyn et al demonstrated [7] that wavepacket equations
can also be successfully applied to the problem of a scattering
on an impurity, if the latter has a sufficiently smooth potential,
thus providing the fully gauge invariant theory of the side-jump
effect. Integrating (59) over the time interval during which a
wavepacket ‘feels’ the impurity potential and assuming that
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this potential is sufficiently weak, one can find a coordinate
shift at a scattering event

δra
k′,k = F × (k′ − k), (68)

where k′ and k are center of mass momentums of the
wavepacket, respectively, after and before the scattering. This
definition of the anomalous coordinate shift at a scattering on
an impurity (the side-jump) is different from some expressions
suggested in early theories. For example Berger [21, 22]
assumed that δya ∼ kx . Berger’s definition follows from the
identification of the coordinate shift with the Berry connection.
Since the Berry connection is not gauge invariant, the old
definition does not have a direct semiclassical meaning.
In contrast, the expression (68) as well as more general
expressions (74), (75) from next section are gauge invariant
and depend both on the in-going k and the out-going k′ Bloch
vectors. This difference becomes important when constructing
the rigorous theory of the effect when the scattering on an
impurity is not isotropic.

There are two main rather distinct effects due to the
anomalous shift. One is the side-jump accumulation. After
averaging over many scatterings, side-jumps do not cancel and
lead to the velocity renormalization by a correction

v(s j)
y (k) =

∑

k′
ωk′,kδra

k′,k. (69)

The second effect is that when a scattering takes place in the
presence of an external electric field, there is a change in the
potential energy upon a scattering given by

�Uk′,k = eE · δra
k′,k. (70)

This change of energy ultimately influences the Hall
conductivity and should be properly included in the
semiclassical Boltzmann equation.

According to [7], the side-jump related conductivities
depend only on parameters taken near the Fermi surface.
This is in contrast to the intrinsic contribution that depends
on the integral of the Berry curvature over the whole Fermi
sea. This may be one of the reasons why the comparison
with experiments showed a good agreement with the intrinsic
contribution calculations that disregarded impurity effects,
except keeping a finite lifetime of quasiparticles [4]. Although
the intrinsic and the side-jump contributions to the transverse
conductivity do not depend on impurity concentrations and in
this sense are parametrically similar, still if the Berry curvature
is weak near the Fermi surface but strong deep inside of it, the
intrinsic contribution can dominate.

The ultimate example of this kind is the quantum
anomalous Hall effect that appears when the Fermi level is
placed inside the gap in the bulk spectrum. In such insulators
the gapless excitations are forbidden (except near the sample
edges), so the side-jump and the skew scattering effects do not
contribute to the conductivity but if the band has a nonzero
Berry curvature there is a quantized intrinsic contribution to
the Hall current. This happens e.g. in 2D Dirac bands, related
to the graphene system [49, 50].

4. Scattering rules

The ‘philosophy’ of the semiclassical approach is to operate
only with classical concepts, however, using several rules
that connect some of them with purely quantum mechanical
ones in order to achieve a quantitatively rigorous result. The
expression for the Berry curvature is one of such rules, namely
it relates the anomalous velocity to Bloch wavefunctions. The
scattering is described in quantum mechanics by the scattering
matrix, which has no analog in classical physics; therefore one
should use the rules that connect the scattering matrix to the
classical microscopic effects.

One such scattering rule is widely known, and for its
importance it is named the golden rule of quantum mechanics.
Lets introduce a combined band–momentum index l = (n,k).
The golden rule relates the scattering rate ωll′ from the
state l ′ into the state l in the continuous spectrum with the
corresponding element of the scattering T -matrix [26]:

ωll′ = 2π |Tll′ |2δ(εl′ − εl). (71)

The T -matrix is defined as

Tll′ = 〈l|V̂ |ψl′ 〉, (72)

where V̂ is the impurity potential operator and |ψl〉 is the
eigenstate of the full Hamiltonian Ĥ = Ĥ0 + V̂ that satisfies
the Lippman–Schwinger equation

|ψl〉 = |l〉 + V̂

εl − Ĥ0 + iη
|ψl〉. (73)

Scattering rates ωll′ cannot include all the possible
information encoded in the scattering matrix. This is obvious
because entries of the T -matrix are complex numbers and
entries of the matrix of scattering rates are real. In the golden
rule only the absolute value of the T -matrix elements are
represented. Thus the semiclassical approach, which uses
only the golden rule as relating the classical and the quantum
descriptions of the scattering, should generally fail. This is
indeed the case in the AHE. The golden rule does not contain
the information about the side-jump effect at a scattering event.
This fact forced authors of [51] to search for the gauge invariant
expression for the side jump that would connect it to the
scattering matrix.

Such an expression indeed can be derived. In the lowest
Born approximation it has a particularly simple form,

δrl′l =
〈

ul′

∣
∣
∣
∣i
∂

∂k′ ul′

〉

−
〈

ul

∣
∣
∣
∣i
∂

∂k
ul

〉

− D̂k′,k arg(Vl′,l), (74)

where arg[a] is the phase of the complex number a and

D̂k′,k = ∂

∂k′ + ∂

∂k
.

This type of expression has been first found even before the
work [51], however, beyond the AHE theory. Belinicher
et al derived it to apply in the photovoltaic effect [52]. They
showed that when electrons absorb a polarized light they
make shifts (74), where V would be responsible for the
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electron–photon interaction. Such shifts of the form (74)
finally contributed to the photo-induced conductivity in their
model. Unfortunately the work [52] had been unnoticed by
the modern Hall effect community until the expression (74)
was independently rederived in [51] and applied to the AHE
problem.

The expression for the side jump (74) is gauge invariant.
Interestingly, it restores the information, lost in the golden rule.
Unlike the golden rule that in the lowest Born approximation
depends on the absolute value of the scattering potential, the
coordinate shift expression depends on its phase but does not
depend on its absolute value. Thus the expression (74) can be
considered as complimentary to the golden rule.

If the impurity potential is spin independent, then the side-
jump does not depend explicitly on the type of the impurity
potential and can be expressed in terms of initial and final states
only [51, 53]:

δrl′l =
〈

ul′

∣
∣
∣
∣i
∂

∂k′ ul′

〉

−
〈

ul

∣
∣
∣
∣i
∂

∂k
ul

〉

− D̂k′,karg[〈ul′ |ul〉]. (75)

At a weak scattering angle it reduces to equation (68), derived
in the previous section [49]. The derivation of the golden
rule (71) and the expression for the coordinate shift (75) can be
done by considering a scattering of a wavepacket. Imagine a
state, that initially coincides with the Bloch state ψl(r, t) under
the influence of a weak potential of an impurity V (r). The
solution of the time-dependent Schrödinger equation can be
written in terms of the eigenvectorsψl′ (r, t) of the unperturbed
Hamiltonian

ψout
l (r, t) =

∑

l′
Cl′(t)ψl′ (r, t). (76)

Consider the wavepacket, that was initially gathered around the
state l. Then in the lowest order in the strength of the potential
the perturbation theory leads to the following expression for
time-dependent coefficients Cl′ (t) (see equation 19.9 in [54]):

Cl′ (t) = −iVl′l

∫ t

−∞
ei(εl′ −εl )t ′

dt ′ + δl′l . (77)

The higher order terms can be incorporated into the above
formula by merely substituting the T -matrix instead of the
disorder matrix elements (see equation 19.10 in [54]).

Cl′ (t) = −iTl′l

∫ t

−∞
ei(εl′ −εl )t ′

dt ′ + δl′l . (78)

From this solution one can show that for l ′ �= l, Cl′ (t)
change with time according to the law

d|Cl′ (t)|2
dt

= 2π |Tl′l |2δ(εl′ − εl). (79)

The coefficient |Cl′ (t)|2 has the meaning of the probability of
the electron to be in the state l ′, from which immediately the
golden rule (71) follows.

The coordinate shift expression was derived in a similar
fashion. One can prepare a wavepacket, approaching the
impurity at the point rimp = 0 according to the law r(t) = v0l t

at t → −∞. The scattering on an impurity generally destroys
the wavepacket, however having the scattering matrix one can
write a formal expression for the average coordinate of the state
of the wavepacket after the scattering. According to [51] it can
be written in the form

r+∞ =
∫

dr
(
�out(r,+∞)

)∗
r�out(r,+∞)

=
∑

l′
|Cl′(t → +∞)|2(v0l′ t + δrl′l). (80)

Since |Cl′ (t → +∞)|2 has the classical meaning of the
scattering probability into the state l ′, the expression in the
parentheses is reasonable to interpret as the coordinate of the
particle if it is scattered in the state l ′. Then the term v0l′ t
simply tells that after the scattering the particle moves with
the new velocity v0l′ and thus the expression δrl′l in (80)
can be interpreted as the coordinate shift at a scattering
event. This identification leads finally to the gauge invariant
expression (74).

The side-jump is a weak effect and thus its expression
in the lowest Born approximation is sufficient for further
discussion. However the lowest Born approximation in the
golden rule is inappropriate for the theory of the AHE. For a
weak disorder one can use the expression of the T -matrix in
terms of the Born series in powers of disorder potential matrix
elements

Tll′ ≈ Vll′ +
∑

l′′

Vll′′ Vl′′l′

εl′ − εl′′ + iη
+ · · · . (81)

One can consider only several first terms in this series in
order to capture the basic microscopic processes. Substituting
equation (81) into (71) one will arrive at the expansion

ωll′ = ω
(2)
ll′ + ω

(3)
ll′ + ω

(4)
ll′ + · · · , (82)

where
ω
(2)
ll′ = 2π〈|Vll′ |2〉disδ(εl − εl′ ), (83)

ω
(3)
ll′ = 2π

(
∑

l′′

〈Vll′ Vl′l′′ Vl′′l〉dis

εl − εl′′ − iη
+ c.c.

)

δ(εl − εl′ ), (84)

and so on. The skew scattering contribution to the Hall effect
follows from the antisymmetric part of the scattering rate

ω
(a)
ll′ ≡ ωll′ − ωl′l

2
. (85)

Since ω(2)ll′ is symmetric, the leading contribution to ω(a)ll′
appears at order V 3, at which the antisymmetric part of the
scattering rate is particularly simple [36, 55]

ω
(3a)
ll′ = −(2π)2

∑

l′′
δ(εl − εl′′ ) Im〈Vll′ Vl′l′′ Vl′′l〉dis

× δ(εl − εl′ ), (86)

with the superscript 3a meaning that this is the antisymmetric
part of the scattering rate calculated at order V 3. Usually,
properties of the skew scattering were inferred only from this
lowest order antisymmetric part of ωll′ . Thus it is customarily
assumed thatω(a)ll′ is proportional to the impurity concentration.
This, however, holds only in the lowest nonzero order, i.e. for
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ω
(3a)
ll′ . In the next order the antisymmetric scattering is

proportional to the product of four disorder vertexes. For
a Gaussian correlated potential 〈V · V · V · V 〉dis ∼ 〈V ·
V 〉dis〈V · V 〉dis ∼ n2, where n is the impurity concentration.
Thus the higher order contribution behaves as ω(4a)

ll′ ∼ n2,
unlike ω(3a)

ll′ ∼ n. This means that the higher order term is
different parametrically and has a rather distinct microscopic
origin; therefore it should not be disregarded. Moreover,
the contribution to the conductivity, arising from ω

(4a)
ll′ , is

parametrically similar to the side-jump related contributions.
Hence, to derive all important effects one should calculate the
symmetric part of ωll′ in the lowest Born approximation and
then calculate its antisymmetric part, including the next two
orders in V .

ωll′ ≈ ω
(2)
ll′ + ω

(3a)
ll′ + ω

(4a)
ll′ . (87)

5. Mechanisms of the AHE in the semiclassical
Boltzmann equation

Equations (71) and (75) contain the quantum mechanical
information necessary to achieve quantitatively rigorous
predictions working in the framework of the semiclassical
Boltzmann equation. This approach takes into account both
the change of the direction and the coordinate shift during a
scattering in a homogeneous crystal in the presence of a driving
electric field E. Keeping only terms up to the linear order in the
electric field the Boltzmann equation reads [53]

∂ fl

∂ t
− eE · v0l

∂ f0(εl)

∂εl

=
∑

l′
ωll′

[

fl − fl′ − ∂ f0(εl)

∂εl
eE · δrll′

]

, (88)

where expressions forωll′ and δrll′ were derived in the previous
section, v0l is the usual velocity

v0l = ∂εl/∂k (89)

and f0(εl) is the equilibrium distribution.
The Boltzmann-type equation (88) has the standard form,

as (8) for free electrons, except the allowed inter-band
transitions and the coordinate shift effect which is taken into
account in the last term in the collision integral on the rhs of
equation (88). The derivation of this term has been explained
in [7, 49, 53]. It follows from the fact that under the scattering
in the electric field from the state l ′ into the state l, the side-
jump is associated with the change of the potential energy
�Ull′ = eE · δrll′ , which has to be compensated by the
change of the kinetic energy. Thus the conservation of energy
requires that εl′ − εl = eE · δrll′ . This in turn means that the
equilibrium distribution does not annihilate the collision term
anymore because f0(εl)− f0(εl′ ) ≈ − ∂ f0(εl )

∂εl
eE ·δrll′ , which is

exactly the last term in (88). The validity of these arguments
was confirmed in numerical simulations [7].

The total distribution function fl in the steady state
(∂ fl/∂ t = 0) can be written as

fl = f0(εl)+ gs
l + ga1

l + ga2
l + gadist

l , (90)

where gs
l , ga1

l , ga2
l and gadist are nonequilibrium corrections to

the distribution function of linear order in the electric field (the
label adist stands for the anomalous distribution). They solve
self-consistent time-independent equations [53]

− eE · v0l
∂ f0(εl)

∂εl
= −

∑

l′
ω
(2)
ll′ (g

s
l − gs

l′), (91)

∑

l′
ω
(3a)
ll′ (g

s
l − gs

l′)+
∑

l′
ω
(2)
ll′ (g

a1
l − ga1

l′ ) = 0, (92)

∑

l′
ω
(4a)
ll′ (g

s
l − gs

l′)+
∑

l′
ω
(2)
ll′ (g

a2
l − ga2

l′ ) = 0 (93)

and

∑

l′
ωll′

(

gadist
l − gadist

l′ − ∂ f0(εl)

∂εl
eE · δrll′

)

= 0. (94)

One can deduce the dependence of the distribution corrections
on the impurity concentration by noticing that ω(2)ll′ ∼ n,
then from (91) follows that gs

l ∼ n−1. Then from (92) and
the fact that ω(3a)

ll′ ∼ n follows that g3a
l ∼ n−1, then from

ω
(4a)
ll′ ∼ n2 and (93) follows that g4a

l ∼ n0 and from (94)
follows gadist

l ∼ n0. A detailed solution of equations (91)–(94)
in a special model was demonstrated in [53].

The first correction gs
l is symmetric and others gadist

l , ga1
l

and ga2
l are asymmetric in the transverse to the electric field

direction. When coupled to the usual part of the velocity the
latter lead to three separate gauge invariant contributions to the
conductivity. For the electric field along the x-axes these read

σ adist
yx = −e

∑

l

(gadist
l /Ex)(v0l)y ∼ n0, (95)

σ sk1
yx = −e

∑

l

(ga1
l /Ex)(v0l)y ∼ n−1, (96)

σ sk2
yx = −e

∑

l

(ga2
l /Ex)(v0l)y ∼ n0. (97)

The last two contributions can be called the skew scattering
conductivities because they originate from the asymmetric
part of the collision term kernel ωll′ . It is, however,
reasonable to distinguish between the two because of their
different dependence on the impurity concentration. The first
skew scattering conductivity (96) is the conventional skew
scattering, that has been discussed by many authors [36, 55].
The second one (97) was generally discarded, although it is
parametrically the same as the side-jump conductivity. The
explicit quantitative estimates of σ sk2

yx so far exist only for
the massive 2D Dirac band [53]. Because of the lack of
the proper terminology we will call (97) the intrinsic skew
scattering because this conductivity, similarly to the intrinsic
contribution, is independent of the impurity concentration n.

The asymmetric corrections to the distribution do not
exhaust all mechanisms of the AHE. We already discussed
that between scatterings under the action of the electric field,
wavepackets move with an extra velocity

va
l = eE × Fl . (98)
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Table 1. Mechanisms of the AHE in the semiclassical Boltzmann equation (SBE), the Luttinger quantum Boltzmann equation (QBE) and the
Kubo–Streda [60] formula (KSF). v̂d

x/y and v̂od
x/y stand for diagonal and off-diagonal parts of the velocity operator in the Bloch state basis, n is

the impurity concentration, Tr is the summation over all states in the momentum space and over all band indexes, GR,GA are, respectively,
retarded and advanced Green functions of the electron system and other symbols have the same meaning as in the bulk of the text.

Mechanism
of the
AHE

Strength
of σyx SBE Exσyx QBE Exσyx KSF σyx

Intrinsic O(n0) −e Tr( f0v
a
y ) −e Tr(ρ̂intv̂

od
y ) σ II

yx + σ I,int
yx

Side-jump
accumulation

O(n0) −e Tr(gsvs j
y ) −e Tr(ρ̂s j v̂

od
y )

e2

2π Tr(v̂od
y ĜRv̂d

x ĜA)

Anomalous
distribution

O(n0) −e Tr(gadistv0y) −e Tr(ρ̂adistv̂
d
y)

e2

2π Tr(v̂d
y ĜRv̂od

x ĜA)

Conventional
skew scattering

O(n−1) −e Tr(ga1v0y)
(ωa

k,k′ ∼ n)
−e Tr(ρ̂(−1)v̂d

y)
e2

2π Tr(v̂d
y ĜRv̂d

x ĜA)

(non-Gaussian
vertex)

Intrinsic
skew scattering

O(n0) −e Tr(ga2v0y)

(ωa
k,k′ ∼ n2)

−e Tr(ρ̂sk v̂
d
y )

e2

2π Tr(v̂d
y ĜRv̂d

x ĜA)

(Gaussian vertex)

This velocity is linear in the electric field, therefore we did not
consider its effect on the distribution function. However, when
coupled to the equilibrium part of the distribution it produces a
finite Hall current.

σ int
yx = e2

∑

l

f0(εl)Fl ∼ n0. (99)

Finally, the accumulation of coordinate shifts after many
scatterings can be described semiclassically on average as an
additional velocity contribution

vs j
l =

∑

l′
ωl′lδrl′l, (100)

σ s j
yx = −e

∑

l

(gs
l /Ex)

(
∑

l′
ωl′l(δrl′l)y

)

∼ n0. (101)

Thus the total transverse conductivity can be written as the
sum of five contributions:

σ total
yx = σ int

yx + σ adist
yx + σ s j

yx + σ sk1
yx + σ sk2

yx . (102)

5.1. Semiclassical versus fully quantum mechanical
techniques

Besides the semiclassical theories, the research on diluted
magnetic semiconductors also stimulated theoretical interest in
other quantitative approaches. Due to the relative simplicity
of several important models, such as the Rashba coupled 2D
electron system, a number of publications appeared recently
with rigorous quantum mechanical calculations by Kubo and
Kubo–Streda formulas [6, 10, 13, 49, 53, 56, 57] and by a
variety of the quantum Boltzmann equation and the Keldysh
techniques [8, 9, 58, 59]. Sinitsyn et al [51, 53] demonstrated
the 1–1 correspondence between semiclassical contributions to
the AHE and the summation of relevant subseries of Feynman
diagrams in the Kubo–Streda formula [60]. Similar agreement
was established with Luttinger’s theory [36]. The results are
summarized in table 1.

According to [53], the classification of contributions in
the Kubo formula is not merely by a separation of diagrams
into the disorder free part and the vertex correction but rather
by the parts of the velocity matrices in chiral basis that stay
inside the trace of the Kubo formula. Thus the intrinsic
contribution appears from the summation of all diagrams
with only off-diagonal parts of the velocity vertexes in Bloch
basis. From this point of view the skew scattering is the
most ‘classical’ because it is due to the summation of all
diagrams with only diagonal parts of velocity operators and the
difference between conventional and intrinsic skew scatterings
is due to different types of disorder vertexes involved. The
conventional skew scattering is due to the vertex correction that
involved correlators of three or more disorder vertexes while
the intrinsic skew scattering is due to only Gaussian disorder
correlations. The side-jump and the anomalous distribution
effects are related to Feynman diagrams that contain one off-
diagonal (inter-band) and one diagonal (intra-band) parts of the
velocity operator. This reflects the fact that although the side-
jump itself is related to the anomalous velocity it contributes
to the final current only after the electric field distorts the
distribution function by a simple acceleration, i.e. by the
coupling to the usual velocity in the Boltzmann equation or
coordinate shifts create an anomalous distribution that again
contributes to the final current via the coupling to the usual
velocity.

5.2. Terminology in the AHE theory

After the above discussion of all the effects leading to the
AHE it seems appropriate to reconcile some of the differences
in the terminology in recent publications. Generally it is
stated that there are three basic microscopic effects, leading
to the Hall current: the intrinsic contribution, the side-jump
and the skew scattering. Table 1 shows that this classification
is too restrictive. There are, in fact, five separate gauge
invariant contributions, each having rather distinct origins. It
is possible to regroup them into three, because the side-jump
accumulation and the anomalous distribution both originate
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from coordinate shifts at scattering events; similarly, the
conventional and the intrinsic skew scatterings both appear
from the asymmetry in the collision term kernel in the
semiclassical Boltzmann equation.

However, such a simplified classification into only three
parts was one of the reasons for confusion. For example,
it is customarily stated that the skew scattering always leads
to the conductivity that depends as 1/n on the impurity
concentration. Table 1 shows that this is not true. The
intrinsic skew scattering conductivity is independent of the
impurity concentration and is parametrically very similar to
the side-jump related contributions. Unjustified claims resulted
in the omission of the intrinsic skew scattering in almost
all discussions of the semiclassical approach to the AHE.
Such an omission has been repeated in the recent efforts to
design the spin Hall effect theory by the analogy with previous
AHE results [22]. It is also useful to distinguish the side-
jump accumulation and the anomalous distribution effects.
The side-jump accumulation is a rather direct consequence
of coordinate shifts while the derivation of the anomalous
distribution requires several extra steps in the semiclassical
theory, which were unnoticed in a few former publications.

Another confusing example from the recent terminology
is the statement that the vertex correction, coming from a
Gaussian correlated disorder in the Kubo formula is due to the
side-jump effect only. Comparing the vertex correction with
the semiclassical expression for the side-jump conductivity,
discussed by Berger, Nozieres and others, one would find
a discrepancy because the intrinsic skew scattering is also
captured by the vertex correction and it was not considered by
the older semiclassical theories that concentrated only on the
side-jump effect.

The classification into the ‘intrinsic’ and ‘extrinsic’
contributions was also understood quite arbitrarily by many
authors. In the present review we coined the word ‘intrinsic’
for the single special contribution, which is due to unusual
trajectories of wavepackets in the external electric field
rather than any other mechanism that involves scatterings
on impurities. This definition of the intrinsic contribution
is justified by the fact that it follows only from the crystal
band structure. Respectively, all other contributions can
be called extrinsic. Sometimes, in other publications [19]
any conductivity contribution, independent of the impurity
concentration n is called intrinsic. This seems not a good
choice of terminology because the side-jump and the intrinsic
skew scattering effects satisfy this definition but originate from
scatterings on impurities. While corresponding conductivities
are independent of n they can depend on other disorder
parameters, for example, impurities with different typical
ranges of scattering angles can result in Hall conductivities
different by a numerical factor of order unity.

There are examples where the ‘intrinsic’ is associated with
any effect induced by the Berry curvature in Bloch bands,
while ‘extrinsic’ would be due to relativistic corrections to the
impurity potential, possibly renormalized in conducting bands
by the crystal potential, as discussed by Berger, Chazalviel and
others [33, 40, 41]. For example, according to this terminology
all effects produced in the 2D electron system by the Rashba

spin–orbit coupling are intrinsic and all other effects such as
due to the spin–orbit part of the impurity potential are extrinsic.
In such a case all the effects discussed in this review would
be called intrinsic. Such terminology also seems somewhat
misleading, because effects due to the disorder spin–orbit
coupling also can be described and classified in the same way
as here when working with the relativistic Dirac equation for
electrons or, in the case of semiconductors, this corresponds
to working with the 8-band model without projecting all
operators to the conducting 2-band system. Then one can work
with a disorder potential free of the spin–orbit coupling and
contributions to the AHE then can be derived in the same way
as in this review [40, 57].

Finally, there is a notion of the ‘Berry phase’ contribution
to the AHE [1]. Often it is identified with the intrinsic
contribution as defined in this review. However, origins of
all disorder related effects can also be traced to the Berry
phase or to a nontrivial topology of Bloch bands. For
example, the side-jump expression and the antisymmetric
part of the scattering rate can be expressed via a topological
Pancharatnam phase [51]. Therefore it is possible to speak
about the Berry phase mechanism of the AHE, which includes
all the physics discussed here but to apply this terminology to
a particular contribution can be misleading.

6. Summary

The modern semiclassical theory rigorously takes into account
all known important contributions in the model of electrons
in Bloch bands interacting with static impurities. Predictions
of this theory were verified with rigorous quantum mechanical
techniques. However, so far the semiclassical theory of the
AHE was built to deal with electrons that do not interact with
each other.

The state of the art is currently at the stage similar to
where the theory of electrons in metals was before Landau
introduced the Fermi liquid hypothesis. The Fermi liquid
theory was originally semiclassical and allowed to derive many
important properties of the electron state prior to systematic
diagrammatic calculations.

The important problem now is the effect of the
nonzero Berry curvature on many-body interactions and only
recently new publications appeared that addressed it. Thus,
Haldane [61] proposed that the Berry phase can be considered
as the property of quasiparticles living near the Fermi surface.
In [62] Shi et al showed the robustness of several results of
the wavepacket theory against e–e interactions. Shindou and
Balents in [63] studied the problem in more detail by deriving
the quantum kinetic equation. The interesting finding was that
the Berry curvature now acts as a pseudo-magnetic field in the
extended (k, ω) space. Also, Shi and Niu [64] considered
interacting wavepackets in bands with the Berry curvature
and found the attracting force that can induce the instability
in the p-channel and thus can facilitate the unconventional
superconductivity. More generally, there is a strong similarity
between properties of systems with the AHE and the p-type
superconductivity and superfluidity in 3He-A [65–69]. The
effective action governing low-energy physics of the px + ipy
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superfluid contains a topological contribution, leading to the
Hall effect, similar to the intrinsic contribution to the AHE
in metals. It should be interesting to explore the diffusion
equation for Bogoliubov’s quasiparticles on this background.
For example, one can expect to find effects similar to the side-
jump and the skew scattering.

Another poorly understood problem is the physics near the
edges in systems with the AHE. It is possible that the side-
jump type scatterings from the edge lead to the edge current.
Analogous phenomena are known in geometrical optics where
the reflected beam is shifted from the incident point on the
mirror [70–75]. This physics can be more complicated because
a reflection of the beam generally changes its intrinsic angular
momentum.

Recently the optically induced AHE attracted some inter-
est both theoretically [12, 76, 77] and experimentally [78, 79].
The conventional AHE needs a magnetization in order to break
the time-reversal symmetry. This requirement can be avoided
if other interactions, such as with a polarized light are intro-
duced. An observation of such an optically induced Hall cur-
rent would allow exploration of the physics discussed above,
avoiding many difficulties in the interpretation of the standard
AHE because currently ferromagnetic samples are very dirty.
So far experimental results on this topic are controversial: one
group reported the observation of the effect [78] and another
reported that the effect was not observed in GaAs at least up
to the measurement uncertainty [79] with results in agreement
with the classical Hanle effect. The rigorous theory of the opti-
cally induced AHE is also missing, although the semiclassical
theory allows an insight to be made. For example, one can ex-
pect to find an intrinsic-like contribution due to distorted trajec-
tories of electrons in simultaneously applied DC and circularly
polarized AC electric fields. The absorption of a photon from
a polarized light can induce side-jump-like shifts etc.

One more recent experiment demonstrated that the
anomalous Hall conductivity can be measurable even in
paramagnetic materials when electron spins are polarized by
an applied external magnetic field [80]. The theoretical model
of this effect must inevitably deal with a strong conventional
Hall effect and the strict separation into conventional and
anomalous Hall effects may not work anymore, for example
due to the phase space volume correction following from
wavepacket equations of motion. The theory of the AHE in
this regime should be upgraded.

It is worth mentioning that new types of the AHE
have been recently proposed for an experimental verifica-
tion [73, 74, 81, 82] and the semiclassical theory can be used to
describe these effects too. There are also suggestions of alter-
native mechanisms of the AHE and the spin Hall effect based
on the possibility of a spin-dependent force [83–85]. This idea
so far is based mainly on the Drude-model type of arguments
and its verification by rigorous quantum mechanical and nu-
merical techniques still has not been developed.

Finally, an extra numerical and ab initio study of
the AHE is needed. So far all existing research of this
kind concentrated only on the intrinsic contribution, treating
discrepancies with experiments by introducing a finite lifetime
of quasiparticles [4, 86]. The rigorous numerical study of

the anomalous Hall conductivity in models with a realistic
disorder is still missing. In contrast, currently there is a
number of successful publications on the related spin Hall
effect [87, 88] that demonstrated good agreement with existing
theoretical results and enabled their extension to analytically
complicated and experimentally more realistic strong disorder
cases [89–95]. Such numerical studies were also valuable
to understand the problem of the spin accumulation near the
edges. Similar research should be very valuable in applications
to the AHE. Simple models such as the Rashba coupled 2D
electron system with an out-of-plane magnetization should be
within the reach of modern numerical algorithms.
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